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David Deutsch 's  1985 algorithm to determine the preferred product structure 
and basis in the many worlds interpretation is examined. His heuristic argument  
for the conditions appearing in the algorithm is found wanting. The question of 
the existence and uniqueness of  a final solution to his algorithm is discussed. 
The algorithm is shown to be inadequate to account for certain types of measure- 
ment which are, at least in principle, possible. 

1. INTRODUCTION: THE MANY WORLDS INTERPRETATION 

The original idea behind the many worlds interpretation was suggested 
by Everett in his relative state formulation of quantum mechanics (Everett, 
1957). DeWitt then elaborated the idea and introduced the many worlds 
terminology to the public (DeWitt, 1968). Since then several versions of 
the many worlds interpretation have been expounded. In this paper we are 
particularly concerned with that presented by Deutsch (Deutsch, 1985). 

Proponents of the many worlds interpretation (MWI) are concerned 
to find a realist interpretation of quantum mechanics which, while consistent 
with our experience, takes quantum mechanics to be a complete, universal, 
physical theory and which does not rely on any a priori metaphysics to 
interpret any state function. The interpretation should not have to appeal 
to the existence of some system necessarily outside the quantum mechanical 
description, such as an observer, a measuring apparatus, or a macroscopic 
system, in order to interpret the state function of a system. An interpretation 
of quantum mechanics as a complete universal physical theory is desirable, 
for only such an interpretation can be used, without introducing hidden 
variables, to interpret the state function of the universe which appears in 
quantum cosmology and quantum gravity, and to make sense of applying 
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quantum theory without a projection postulate to an isolated system consist- 
ing of an object and an apparatus successfully making measurements on 
the object. 

I f  no projection postulate is assumed in the quantum mechanical 
description of measurement for an isolated object-apparatus system, then, 
if the initial state of  the object system is not an eigenstate of  the object 
observable being measured, the final state of  the joint object-apparatus  
system is not a product of  an object system state and an apparatus system 
state describing the apparatus as having some definite measurement out- 
come, nor is it a proper  mixture of such states. Rather, it is a correlated 
"entangled state" for the two subsystems (or mixture of  such entangled 
states): that is, a state in which neither the object system nor the apparatus 
system is in a definite state. Furthermore, the final state is not an eigenstate 
of  the apparatus "pointer  observable" deigned for the joint system. This 
has been shown, assuming unitary evolution for the joint object-apparatus  
system, even under very general conditions for measurement (Fine, 1970; 
Brown, 1986). Such a final description seems to be inconsistent with our 
experience of definite measurement outcomes. Many attempts have been 
made to resolve this conflict between the quantum mechanical description 
and our experience. Following von Neumann (1955, Chapter V, Section I), 
the standard solution is to add an extra postulate to the theory of quantum 
mechanics, to the effect that, at some stage (not specified unambiguously 
by anyone as yet) in the measurement or observation the state function 
"collapses" to only one of the elements of  the superposition. 

Others have proposed that quantum mechanics does not provide a 
complete description of the world; the theory needs to be supplemented 
by further var iables- -"h idden variables"--which,  with the quantum 
mechanical state, determine the final position of the apparatus pointer. This 
would allow in principle that the apparatus pointer may have a definite 
position even when its quantum mechanical state is not an eigenstate of  
the apparatus pointer observable or a proper mixture of  such states. 
However, such theories are not without their own problems [see, for 
example, Bell (1964), Bub (1976), and Heywood and Redhead (1983); for 
a good survey of hidden variable theories see Belinfante (1973)]. The many 
worlds interpretation attempts to resolve the conflict without introducing 
either a new type of dynamics to collapse the problematic superposition or 
a new set of  state variables. Instead, it hopes to provide a new interpretation 
of the superposition which is  consistent with our experience of definite 
measurement outcomes. 

According to DeWitt 's version of the MWI, during the course of  a 
measurement,  the world splits into a number  of  different worlds, one for 
each element of  the superposition obtained when the final state for the 
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object-apparatus  system, say [qJ), is expanded in the basis of product states 
of  eigenstates of the apparatus pointer observable, say {IAi)}, and the 
normalized relative states for the object system, (Ni(A, Iq,)}. In each world, 
the apparatus pointer has a definite position indicating the eigenvalue of 
the apparatus pointer observable for the element of the superposition 
describing that world, and the object system is characterized by its normal- 
ized relative state for that world. In a "measurement  of  the first kind," these 
object system states will be eigenstates of  the object observable being 
measured. Therefore, according to the MWI, at the end of such a measure- 
ment this observable will have a well-defined value in each of the worlds 
even if it did not have well-defined values at the start of the measurement. 

As far as the quantum mechanical description is concerned, a measure- 
ment interaction is a type of quantum mechanical interaction between two 
systems and no particular formal characteristic picks out an actual measure- 
ment interaction from a measurementlike interaction. Therefore, DeWitt 
postulates that a splitting of worlds occurs as a result of  any measurementlike 
interaction taking place anywhere in the universe. He suggests that the 
worlds produced in the splitting are such that in each world the mean square 
deviation of any "macroscopic"  observable is never large (DeWitt, 1971). 

One of the fundamental  problems with the pre-Deutsch versions of  the 
many worlds interpretation is that in order to determine how the universe 
is split for a given state ]~O), information beyond that given in the quantum 
mechanical description is required. The interpretations do not escape the 
use of a priori metaphysics as had been hoped. For example, in DeWitt 's 
version, in order to interpret the state function at the end of a measurement,  
we need to know which subsystems in the Hilbert space for the system 
represent the object and apparatus subsystems, and which operator for the 
apparatus subsystem represents the position of the apparatus pointer. For 
a general state 15), not necessarily the result of  a measurement,  DeWitt 's 
treatment suggests that we need to know which subsystems in the Hilbert 
space represent macroscopic systems and which operators represent macro- 
scopic observables, in order to be able to determine which expansion of 
1~) should be taken to show how the worlds are split for that state. However, 
no characterization of the quantum mechanical description of these subsys- 
tems and observables is given. Therefore, the way the world is split for a 
given state 1~9) cannot be determined from the quantum mechanical descrip- 
tion alone; we have to decide which subsystems and operators represent 
macroscopic systems and observables. Therefore, we rely on a priori meta- 
physics for the interpretation of I~O), and it is left a mystery as to how the 
world in state [q,) knows how to split according to our a priori metaphysics. 

If  collapse theories are not to rely on a priori metaphysics for their 
application, they, too, must give some means of specifying when and into 
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which mixture the state collapses. But in their case this specification need 
only be within the vocabulary and dynamics of  s o m e  physical theory, not 
necessarily quantum mechanics. The theory may be a new one, introduced 
to describe the process of  the collapse. In a hidden variable theory, the 
problem of specification is overcome if the variables, together with the state 
function, determine which observables of  the system have well-defined 
values at any time. 

In his paper  Deutsch (1985) attempts to provide a specification of the 
preferred subsystem structure and basis for the MWI Within the theory of 
quantum mechanics. He sets up an algorithm which requires as input only 
the state function, Hilbert space, and Hamiltonian for the system at time 
t. As output it is supposed to give a particular product structure, that is, a 
division of the system into particular subsystems each associated with a 
particular subspace of the Hilbert space and a particular set of operators 
(the set of  operators confined to that subspace), and a particular basis for 
each subsystem in that product structure. The basis so determined in the 
Hilbert space of the whole system Deutsch calls the "interpretation basis." 
It is this basis which is to be used in interpreting ]~0). It determines which 
observables have values in the many universes making up the world at time 
t. With the state function for the system, it determines the proport ion of 
universes in which the different values for these observables occur. Before 
we begin a discussion of Deutsch's algorithm to determine the interpretation 
basis and his heuristic argument for the conditions appearing in the 
algorithm, let us draw attention to a further important difference between 
Deutsch's version of the MWI and the versions which appeared previously 
to his. 

Everett (1957), Graham (1970), and DeWitt (1968) each thought that 
they had derived the statistical assertions of  quantum mechanics in the 
context of  the MWI without introducing any statistical postulates or proba- 
bility assumptions. However, as has been pointed out by several writers 
following Ballentine (1973; see, for example, Bell, 1981; Deutsch, 1985; 
Tipler, 1986), a probabili ty assumption has to be made in each of their 
derivations; each of them has to assume that worlds of measure nearly zero 
or zero in the norm Hilbert space sense have probability nearly zero or 
zero, respectively. These assumptions are covered by the assumption that 
the probabili ty of a world described by an element of  the superposition 
with measure Ic~[ 2 is [c,[ 2. But even with this assumption, a problem still 
occurs in their derivations of  the statistical assertions of  quantum 
mechanics- -how to understand statements about the probability of  DeWitt 
worlds. It is assumed that each element in the appropriate superposition 
represents a separate DeWitt world (A1), and that the weights for each 
element represent the probability of that world (A2). But if each of these 
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worlds definitely occurs and each only singularly (A1), then, if we are going 
to introduce probabilities, each world should be assigned the same probabil- 
ity value. (Whether this should be 1 or 1/n, where n is the number of distinct 
worlds, is then open to debate.) There is nothing in the physical picture to 
correspond to the claim (A2) that the different worlds have certain prob- 
abilities, the values of which vary according to the measure in Hilbert space 
associated with each world. 

Deutsch thought that he could overcome this problem by enriching 
DeWitt's picture of the many worlds: Deutsch postulates that the world 
consists of a continuously infinite measured set of universes (a set of 
universes together with a measure on that set). Given that the interpretation 
basis at time t is {[ai, t)}, he postulates that the world described by the state 
function [~p) at time t is such that, in a proportion [(0[ai, t)[ 2 of all the 
universes, the value of any observable 6 diagonal in the interpretation basis 
is (ai, t lolai ,  t). Therefore, if the expansion of the world state function in 
the interpretation basis {la~)}, i=  1 , . . . ,  n, is I o ) = E i  c, [a~), then the set of 
universes consists of n disjoint subsets. Each of these subsets Deutsch calls 
a "branch." The ith branch with measure ]cil 2 contains a proportion levi 2 of 
the universes. In other words, the measure associated with each branch is 
taken to represent the proportion of universes in that branch. Therefore, in 
Deutsch's version of the many worlds interpretation (perhaps better called 
a many universes interpretation), there is at least something in the physical 
picture to which to relate the probabilities associated with the Hilbert space 
measure, namely the proportion of universes in a branch. Whether this 
relationship between probability and proportion can be used to explain 
successfully, in a manner consistent with our ideas about probability, the 
probability statements we use to describe the phenomena that we experience 
in one universe in the set is a topic for discussion which we save for a 
further paper. Now we return to the main concern of this paper - -a  discussion 
of Deutsch's algorithm for the interpretation basis, and his heuristic argu- 
ment for the algorithm. 

2. DEUTSCH'S ALGORITHM TO DEFINE 
THE INTERPRETATION BASIS 

Deutsch's argument for the conditions appearing in his algorithm to 
determine the interpretation basis is heuristic. It could not be otherwise 
unless we were to change the theory of quantum mechanics by adding 
further axioms. Using the Hilbert space, state function, and Hamiltonian 
for a system, we can set up definitions for many different bases in the Hilbert 
space. In order to decide which definition picks out the basis appropriate 
for the interpretation basis, considerations outside the theory of quantum 
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mechanics must be invoked. This Deutsch does in his heuristic argument; 
he attempts to give physical reasons for why the conditions appearing in 
his algorithm should be satisfied by the interpretation basis. In Section 2.1 
we criticise Deutsch's heuristic argument. These criticisms of course cannot 
show that his algorithm is definitely wrong, only that it is not set up by the 
argument he gives. The real test of  the algorithm is whether, when it is 
conjoined with quantum theory and Deutsch's many universes interpreta- 
tion, the resulting interpreted theory can account for the experiences we 
actually have. In Section 2.2, we consider the question of the existence and 
uniqueness of  the solution to Deutsch's algorithm, and in Section 2.3 we 
show that his algorithm is inadequate to account for certain types of  
measurement,  which are, at least in principle, possible. 

2.1. Deutsch's Heuristic Argument for the Algorithm 

First Deutsch considers the case of  a measurement of  the first kind. 
For such a measurement,  we know what we want the preferred product 
structure and basis to be at the end of the measurement;  we want the product 
structure which has the object as one subsystem, the apparatus as the other 
subsystem, and the basis of  product states of  the eigenstates of  the object 
observable being measured and the eigenstates of  the apparatus pointer 
observable. We require that certain features hold for measurements of  the 
first kind. Deutsch claims that from these it follows that a certain condition 
is satisfied by the product  structure and basis we want to specify as the 
interpretation basis in this case: there exist some Ha and H2, Hermitian 
operators confined to the object subsystem and apparatus subsystem, respec- 
tively, such that H - Ha -/-/2 is diagonal in the interpretation basis, where 
/-I is the Hamiltonian for the system. He then assumes that in general this 
condition holds for the interpretation basis: for a system consisting of two 
subsystems, the interpretation product structure and basis are such that 

A A 

there exist Hermitian operators H~ and/-/2 confined to the product structure 
subsystems, for which H - H a -  H2 is diagonal in the interpretation basis, 
where H is the Hamiltonian for the joint system (Condition C1). This 
condition is not sufficient to determine the interpretation basis on its own, 
but Deutsch claims that essentially it fixes the product structure, given a 
system which consists of  two subsystems, the dimensionalities of  whose 
Hitbert spaces is known. 

For the second stage of his heuristic argument, Deutsch assumes that 
the product structure dividing a system into two subsystems is already given, 
and uses an argument based on external measurements to try to demonstrate 
that a second condition must be satisfied by the interpretation basis in this 
case. He argues that this condition must be satisfied if the interpretation 
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using this basis is to remain consistent with the requirement that no effect 
can be propagated at superluminal velocities, or in general by means not 
described in the dynamics of  quantum theory. He then assumes that this 
condition holds in general for the interpretation basis: for a system consisting 
of two subsystems, the interpretation basis is the basis made up of the 
product states of  the eigenstates of the two subsystem density operators 
(Condition C2). Conditions C1 and C2 are to be used to determine the 
interpretation basis at any time from the state function, Hilbert space, and 
Hamiltonian for the system at that time, given that the system consists of  
just two subsystems, the dimensionality of  whose Hilbert spaces is known. 

Next Deutsch considers how these two conditions should be used to 
specify the interpretation basis for a system composed of three subsystems, 
the dimensionality of  whose Hilbert spaces is known. He then suggests that 
the method admits of  only one generalization to the case where the 
dimensionality of  the Hilbert space for the whole system only is given and 
it has arbitrarily (but finitely) many factors. Deutsch assumes that the 
subsystems for such a system will have Hilbert spaces of prime dimension 
and that his algorithm will determine these subsystems through repeated 
use of  Condition C1. In the case of a system with Hilbert space of dimension 
n, where n is the product of  more than two primes, the algorithm instructs 
us first to take an arbitrary product structure dividing the system into two 
subsystems, one of which has a Hilbert space of prime dimension, and then 
to take further successive product structures dividing the "nonprime subsys- 
tem" into two subsystems, one with a Hilbert space of prime dimension, 
etc., until both subsystems have Hilbert spaces of  prime dimension. Condi- 
tion C2 is used to determine the basis for each of the "prime subsystems." 
The product structure itself is then determined by repeated use of Condition 
C1. In this way, the algorithm is supposed to determine the interpretation 
basis for any system, at any time, solely from its Hilbert space, state function, 
and Hamiltonian for that time. Although the generalization of Deutsch's 
method to the case of  systems composed of more than two subsystems 
requires further explanation and discussion than is given in his article, we 
shall concentrate on the first two stages of  Deutsch's heuristic argument, 
for it is in these stages that crucial gaps in his argument occur. 

The two features of  measurements of  the first kind which Deutsch 
appeals to in his argument for Condition C1 on the interpretation basis are: 

F1. I f  the object system is initially in an eigenstate of the observable 
being measured, then, on completion of the measurement,  it should be in 
this same eigenstate and the apparatus subsystem should be in the eigenstate 
of  the apparatus pointer observable with eigenvalue corresponding to the 
eigenvalue of the object system state. This is the defining property of 
measurements of the first kind. Interactions between the object and 
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apparatus subsystems with this property can be described in the formalism 
of quantum mechanics by an appropriate Hamiltonian (von Neumann, 
1955, Chapter VI, Section 3; Deutsch, 1985, p. 12) and therefore interactions 
of this type are allowed by the theory. 

F2. The dependence of the apparatus observable on the object observ- 
able should cease on completion of the measurement. The measurement is 
set up to correlate eigenstates of the apparatus observable with eigenstates 
of the object observable; once this correlation has been achieved the interac- 
tion between the two subsystems should terminate. This signals the comple- 
tion of the measurement as far as the MWI is concerned; the relevant 
information has been transmitted to the apparatus subsystem. 

Deutsch's argument is then: suppose that initially the object system is 
in an eigenstate of the object observable, say [a~); then it follows from F1 
that on completion of the measurement, the object system is in the eigenstate 
[a i) of the object observable, and the apparatus system is in the correspond- 
ing eigenstate of the apparatus pointer observable. Let this be written [a~). 
Therefore the state of the object-apparatus system is ]a~)[a~), a factorizable, 
nonentangled state for the two subsystems. According to F2, the dependence 
of the apparatus observable on the object observable ceases after this time; 
therefore the system should remain in a factorizable state for the object and 
apparatus subsystems. The necessary and sufficient condition for this to 
occur, which is given by Deutsch in Section 3 and referred to in his heuristic 
argument, is that the Hamil tonian/q for the joint system on completion of 
the measurement is such that [/q - (/q~ +/q2)][a~) la~) = 0, for some/-)1 and 
/-)2, Hamiltonians confined to the object and apparatus subsystems, respec- 
tively. However, in his heuristic argument he states the condition as: the 
Hamiltonian for the joint system on completion of the measurement is such 
that ]a~)[a~) is an eigenstate o f / - ) -  (/q~ + H2) for some/ql  and/q2,  Hamil- 
tonians confined to the object and apparatus subsystems, respectively. This 
is perhaps a little confusing, but it is not incorrect, since the two conditions 
are in fact equivalent, as can be easily shown. 

The same line of reasoning may be followed through for each object 
observable eigenstate [a~) to show that the Hamiltonian for the joint system 
must be such that the following condition is satisfied: each [a~)la~) is an 
eigenstate of H -  (i01 + 22) for some /~1 and /q2, Hamiltonians confined 
to the object and apparatus subsystems, respectively. This condition is 
equivalent to the condition: for each ]a~)[a~), there exist some /ql and/q2 
such that [/q - (/-)1 +/q2)]la~) [a~) = 0. However, from these conditions it 

i j / ~ _ _  does not follow that each basis state la 1)[a2) is an eigenstate of (/ql +/~r2) 
for some/ql and/q2, nor equivalently, that for each basis state [ail)[a{) there 
exist some H~ and /-/2 such that [H-(I2t1+I212)][a~)[a~)=O. In order to 
establish this condition, Deutsch appeals to a "more realistic model" of 
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measurement, where imperfections in the measurement allow for each of 
the basis states, lail)la{) to appear as final states, not just the accurate ones, 
]ail) la~). Feature F2, that on completion of the measurement the apparatus 
observable should cease to depend on the object observable, is still required 
of such measurements and so, following through the same line of argument 
as for the accurate states, the followin~ condition is obtained: each basis 
state ]a~)la{) is an eigenstate of H - ( H I + H 2 )  for s o m e  /'tl and /-)2. This 
is equivalent to the condition: for each of the basis states ]ai~)la{), there 
exists some H1 and/42 such that [/4 - (/4, +/42)]1a~) la{) = 0. 

Deutsch concludes that there must exist a choice o f / ~  and I-)2 such 
that H - ( / ~ + / 4 : )  is diagonal in the interpretation basis {lal)las i.e., 
there must exist a choice of/41 and H2 such that 

" ^ " " " i j 
[ H  - ( H  1 + H2)]la'l)]a~) = a o [a,)]a2) 

i j for each state ]al)]a2) in the interpretation basis. However, this condition 
does not follow from the condition argued for in the preceding paragraph: 
In general, from the condition, f o r  each i, j ,  there exists an x and y such 
t h a t . . . ,  it does not follow that, there exists an x and y such that f o r  each 

i,j ,  . . . .  We would have to prove that in this particular case, in the theory 
of quantum mechanics, the inference is valid. We conjecture that no such 
proof  exists; the one does not follow from the other. Therefore, Deutsch's 
heuristic argument is inadequate as it stands to establish Condition C1 as 
a condition on the interpretation basis (even in the particular case considered 
on completion of a perfect nondisturbing measurement) and we conjecture 
that the gaps cannot be filled to render an adequate argument. 

Condition C1 is a condition on both the product structure and the 
basis in that structure, but it is not sufficient to determine these. Deutsch 
claims that essentially it fixes the product structure. In arguing for a further 
condition, which with the first should determine the interpretation basis, 
Deutsch supposes that the product structure dividing a system into two 
subsystems is already given, and uses an argument based on external 
measurements to obtain a condition determining a basis for this product 
structure: C2. The interpretation basis at time t is the basis of eigenstates 
of t3~(t) ( = T r 2 , t / ~ )  and of/~2(t) (= Tr,,, r where f i=  I~p)(t)t, IgJ) being the 
state of the joint system. A defender of a physical theory which takes 
quantum mechanics and combines it with some projection postulate inter- 
preted as representing an objective collapse of the state function (a "collapse 
theory") could use an argument of the form given by Deutsch to justify 
taking this condition as a formal condition on the eigenstates into which 
the state of a system collapses on measurement. 

Thus, suppose two systems which have interacted in the past so that 
they are in some entangled state 10) are now spatially separated. Assume 
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that a measurement on one effects a discontinuous change of the state vector 
for the joint system into a mixture described by some density operator, 

,~ i j 2 i j i j =z I<r la,a2><ala21 
/j 

where {la~)} is some complete set of orthonormal states in the Hilbert space 
of subsystem 1 and {[a~)} is some complete set of  orthonormal states in the 
Hilbert space of subsystem 2. We want to determine the conditions which 
must be satisfied by this mixture if there is to be no superluminal signaling, 
or, in general, no signaling without some interaction described by the 
dynamical equations of quantum mechanics. 

To remain consistent with the prohibition of the propagation of infor- 
mation at superluminal velocities or by nondynamical  means, measurements 
performed at time t on one of the subsystems must not affect the probabilities 
of  the results of  measurements performed at the "same"  time on the other 
subsystem. I f  the state vector is not collapsed before measurements are 
made on subsystem 1, then the statistics for these measurement results, 
whichever ~2(t) observable is to be measured on subsystem 2, can be 
calculated from the density operator/~(t)  = where Io> is the uncol- 
lapsed state vector at time t, by tracing over the subsystem 2 states. On the 
other hand, if the subsystem 2 measurement has been made and the state 
vector has collapsed into a mixture, then the statistics for the subsystem 1 
measurement results can be obtained from the density operator/~m(t) by 
tracing over the subsystem 2 states. I f  the statistics obtained from /~m were 
different from the statistics obtained from/~, it would be possible in principle 
to determine at time t from measurements on subsystem 1 whether or not 
a measurement had been made at a spacelike separation from subsystem 
1, or, in general, on a subsystem no longer dynamically interacting with 
subsystem 1. Therefore, if there is to be no superluminal signaling or no 
nondynamically carried transfer of  information, r (= Tr2., t;m) must be 
equal to t;l(t) (= Tr2,t t3). Therefore, since r is diagonal in the interpreta- 
tion basis, ~l(t) must be diagonal in the interpretation basis. A similar 
argument applies to t;2(t) (=Tr2,,t3). Therefore, the states which make 
up the mixture into which the state of  the system collapses must be the 
product states of  the eigenstates of t;a with the eigenstates of  t32. Call this 
Condition C2'. 

It might be suggested that this argument for Condition C2' is redundant 
given F~rry's (1936) work on the distinction between a mixture and the 
pure state for a system of two correlated subsystems, because from his 
results it can be shown that it is already guaranteed that no violation of the 
"no  superluminal signaling principle" will occur. But from Furry's work it 
can only be shown that no violation occurs, supposing the particular mixture 
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he gives forms as a result of  a measurement on one of the subsystems. This 
mixture happens to satisfy Condition C2'. It cannot be concluded from this 
that any mixture assumed on collapse must satisfy Condition C2' if no 
violation is to occur. It is this conclusion which is required to establish 
condition C2' and which is the conclusion of the argument given above. 

However, an argument of  the same form to establish that C2 is a 
necessary condition on the states in the interpretation basis does not follow 
through in the context of  the MWI. Although in the MWI Deutsch introduces 
a density operator ~ which, on completion of a measurement,  looks iden- 
tical to pm (the density operator  in the collapse theory), ~ is given a very 
different physical significance than Pm and other density operators in quan- 
tum mechanics. This renders invalid a crucial step in the argument when 
it is translated from the collapse version to a MWI version. 

According to Deutsch's version of the MWI, the world consists of  a 
continuously infinite measured set of universes (that is, a set together with 
a measure on that set) such that at each instant t, in a proportion I(Ola, t)l 2 
of the set of universes, the value of an observable O diagonal in the 
interpretation basis {la, t)} is (a, tlOla, t). Deutsch claims that this descrip- 
tion may be summarized as follows: I f  the interpretation basis at time t is 
{la, t)}, then the set of  all universes at time t is an ensemble which may be 
described by the density operator 

(Deutsch, 1985, pp. 20, 21). But if this is intended only as a summary of 
the previous description, then fi~ cannot be given the same physical sig- 
nificance as is usually given to quantum mechanical density operators. 
Normally, the statistics calculated from the quantum mechanical density 
operator for a system for any observable of the system is given a physical 
significance, in that it is interpreted as the predicted statistics for the results 
of a measurement of that observable, fi~, however, is only supposed to 
summarize the statistics of  certain observables of  the system, those that are 
diagonal in the interpretation basis, and the statistics given is interpreted 
as describing the distribution of possessed values. ~ is not supposed to tell 
us anything about observables not diagonal in the interpretation basis. I f  
the projection operator for the eigenvalue qi of  the observable Q is / ; (qi ) ,  
then, if () is diagonal in the interpretation basis at time t, Tr[t3~. /3(qi)] is 
the proport ion of universes in which the observable () has the value q~; if 

is not diagonal in the interpretation basis, Tr[/3~ �9 has no physical 
significance; it does not give the proportion of universes in which a certain 
value is possessed by the observable Q, nor the proportion of universes in 
which a certain value will be obtained on measurements of Q. 
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Now we can see that the translation of the argument for Condition C2' 
in the context of a collapse theory to the context of the MWI to generate 
an argument for Condition C2 is invalid because the following step in the 
MWI version is invalid: if the subsystem 2 measurement has been made 
and the system is described at time t by the density operator t3~(t), then 
the statistics for the subsystem 1 measurement results can be obtained by 
tracing over the states for all the subsystems except subsystem 1. This is 
invalid because fi~(t) is only to be used to give the statistics of observables 
diagonal in the interpretation basis, not just any subsystem 1 observable. 
Therefore, Deutsch's argument for Condition C2 does not carry through in 
the context of the MWI. Of course, fi~ should give the same statistics as fi 
for observables which are diagonal in the interpretation basis, but this is 
already guaranteed by the way in which fi~ is constructed: Let the interpreta- 
tion basis at time t be {la, t)}, and let the expansion of 10, t) in the 
interpretation basis be ]0, t ) = ~  c~]a, t); then 

~(t) = 2 c~c~]c~, t)(13, tl 
o~,~3 

/~(t)  =E 1c~121 ce, t}(ce, tl 
o~ 

Let (~ be an observable which is diagonal in the interpretation basis, and 
let its eigenvalue for eigenstate ]a) be q~. Then, using /~, the probability 
that on measurement Q = q~ is Tr[]a)(c~[. fi], which equals Icol 2. In the 
MWI, using Bit, the proportion of universes in which 0 has the value q~ is 
Tr[l~)(~l" t~.], which also equals Icol 2 

Any argument that tries to establish that fi~ should equal fi~, i.e., that 
the statistics calculated from fi~ for any observable Q should equal those 
calculated from/3,~ for Q, i = 1, 2, is going to fall prey to the objection that 
fi~ should only be used to give the statistics of observables diagonal in the 
interpretation basis, unless some physical reasons can be given for interpret- 
ing fi, differently. Without such reasons, in order to defend Condition C2, 
that the interpretation basis at time t is the basis of eigenstates of t3a(t) and 
fi2(t), in the context of the MWI, we must find an argument which does 
not have to establish this identity. One way one might defend Condition 
C2 is to point out that in the case of a perfect nondisturbing measurement 
the basis we want for the interpretation basis satisfies Condition C2. But 
this does not give us a physical explanation as to why the condition should 
hold in this case, let alone in general. 

To conclude this section, Deutsch's heuristic argument is inadequate 
to set up either Condition C1 or C2 for use in his algorithm. If  Deutsch 
still wants to present a heuristic argument for these conditions, it must take 
some other form. A line of argument, which Deutsch himself suggests 
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(Deutsch, 1985, p. 29), and perhaps should be considered further, uses the 
idea that these conditions are the requirements that the different world 
branches cannot communicate with one another under most circumstances. 
But we leave a consideration of this proposal to another time. 

2.2. The Existence and Uniqueness of a Suitable Solution to 
Deutsch's Algorithm 

1. In generalizing his method to the case of a system the dimensionality 
of whose Hilbert space has arbitrarily (but finitely) many factors, Deutsch 
assumes that the interpretation basis product structure should divide the 
system into subsystems with prime-dimensional Hilbert spaces, and that his 
algorithm finally determines such a product structure through repeated use 
of Condition C1. The question therefore arises as to whether these two 
assumptions are justified. We see no reason why the subsystems of the 
interpretation basis should always have to have Hilbert spaces of prime 
dimension, though they might. But supposing, as Deutsch does, that they 
do, we want to check that a final solution to Deutsch's algorithm always 
exists. A final solution will always exist if, for an arbitrary system with a 
Hilbert space of dimension mn, for any Hamiltonian /~ and state I~) for 
the system, there is always some product structure dividing the system into 
two subsystems 1 and 2, one with a Hilbert space of dimension m, the other 
with a Hilbert space of dimension n, which satisfies Condition C1. In the 
tidal stage of applying the algorithm, rn and n will both be prime. In the 
preceding stages, only one of them will be prime. Condition C1 states that 

A A 

there exist H1 and/-/2, Hermitian operators in the Hilbert spaces of subsys- 
tems 1 and 2, respectively, such that H - H1 - /42  is diagonal in the interpre- 
tation basis, which, according to Condition C2, is the basis in which the 
subsystem density operators fil and/32 are diagonal. In his paper Deutsch 
(1985) gives the following "crude but encouraging argument" for the 
existence of a (unique) product structure satisfying Condition C1. 

Suppose Conditions C1 and C2 hold for some product structure divid- 
A A 

ing the system into two subsystems 1 and 2; then, for some Hi and H2,  
/4 -/-)1 - / 4z  is diagonal in the basis in which/31 and/32 are diagonal. From 
this it follows that, for some /41 and /42, 

[~) A A A 

- H 1 - / - / 2 ,  Pl | = 0 ( E l )  

By taking the partial traces of this equation for subsystems 1 and 2, we 
obtain the following equations: 

Trl,,[/4,/31| : F/-t2,/32] 
" *  A A 

Tr2,,EH, Pl @/32] = [H1 ,  /31] 
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If these are substituted back into the original equation, we obtain the 
following equation: 

[I2I, pl|174 , E H ,  ~ " " " " " = ^ ~ , Pa|  PI@P2]@P2 0 (E2) 

Since this equation has the same number of independent real equations as 
independent components in the product structure, it should have a unique 
solution. The hope is that therefore there always exists a (unique) product 
structure satisfying Condition C1. 

H o w e v e r , / )  and IqJ) may be such that there is a product structure and 
/~1 and t)2 satisfying equation (El)  and therefore equation (E2), but 
that in this product s t ruc ture , / )  - / ) 1  - / ) 2  is not diagonal in the interpreta- 
tion basis in which t~l and /32 are diagonal; / ) - / ) 1 - / ) 2  may have some 
nonzero off-diagonal elements and still satisfy equation (El)  as long as 
t;l| has some degeneracies. These nonzero elements need not be such 
that it is possible to find some o ther / )~  and / ) i  such t h a t / ) - / ) ~ - / ) I  is 
diagonal in the basis in which/31 and/32 are diagonal. Therefore, although 
a product structure satisfying Condition C1 will satisfy equations (El)  and 
(E2), a product structure satisfying equations (El)  and (E2) does not 
necessarily satisfy Condition C1. Therefore, Deutsch's argument that a 
unique solution exists for equation (E2) does not necessarily show that a 
solution always exists for Condition C1, and so he does not have an argument 
to show that a final solution always exists to his algorithm. Therefore, there 
may be situations in which there is no solution to his algorithm and no 
interpretation basis will be determined. We consider next whether, if a 
solution does exist, it is guaranteed to be unique. 

2. In his pape~ Deutseh (1985) admits that degeneracies in/31(t), ~2(t), 
or H ( t ) - / ) l ( t ) -  Hz(t) will occur in some cases and spoil the uniqueness 
of the solution to his algorithm; his algorithm will pick out more than one 
interpretation basis. For each interpretation basis there will be on offer an 
apparently different description as to how the world is in such cases. 
However, Deutsch (1985, p. 28) claims that: "Such degeneracies occur 
precisely when there is nothing in the world to distinguish between the 
different interpretations arising from the equivalence class of interpretation 
bases generated by the algorithm. The interpretations differ in form only." 

In this section we consider various situations in which t31(t) and t~2(t) 
are degenerate and discuss in each case whether Deutsch's claim is accep- 
table. We show that the degeneracies occur even for situations in which it 
appears 'that the different interpretations on offer should not be construed 
as differing in form only, and therefore that Deutsch's algorithm is 
inadequate to pick out the required interpretation basis in these situations. 
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The example of degeneracy which Deutsch discusses in his article is 
the case of two spin-�89 systems 1 and 2 in the state 

I~> = ~ (1r 1r + Ir I~>~) 

Assuming that the correct product structure divides the system into the two 
spin-�89 subsystems 1 and 2, ~ = I(IT>,<TI, + I+>l($h), and is therefore degener- 
ate; we can take as orthonormal eigenstates [1')~ and [~)1, or 

IN>, =~(IT>,+I&>I), [S)l = ~-~ ([]X)l - [;)1) 

or 

I+o), =cos  0 Iq'h +sin 0 [$),, l - o h - - s i n  0 I~'),- cos 0 15), 

or . . . . . .  Also,/32 = �89 + [$)2($12) and is therefore degenerate; we can 
take as eigenstates ]1')2 and [+)2, or IN)2 and [S)2, or [+0)2 and ]-0)2, or . . . .  
Therefore, we can take as interpretation basis the product states of [T)I, [~,)1 
and 11")2, [~)2, or [N)I, ]S)~ and [N)2 , [S)2 , or [1"}~, ]$)~ a n d  IN)2 , [S)2 , or 
[I')1, [~)1 and [+0)2, I-0)2, etc. 

Depending on which of these possible interpretation bases we choose, 
we obtain a "different" description of the world. For example, choosing 
the basis {]1')1[~')2, [T)1[,~)2, [$)1[1')2, [$)1[$)2}, the interpretation is that the 
world is divided into two branches of equal size: in one, subsystem 1 has 
spin up, subsystem 2 spin down; in the other branch, subsystem 1 has spin 
down and subsystem 2 has spin up. Choosing the basis {[N)I[N)2, [N)~[S)2, 
[Sh[N)2, 1S)~1S)2}, the world is divided into two branches of equal size: in 
one, both subsystems have spins in the direction north; in the other branch, 
both subsystems have spins in the direction south. Choosing the basis 
{11')~[N)2, [~)l[S}2, [$)1[N)2, ]$)~[S)2}, the expansion of [~) is 

14,> = �89 N>2 + IT>,Is>= + I~>11N>2-I+>llS>=) 
The interpretation is therefore that the world is divided into four branches: 
in one, subsystem 1 has spin up and subsystem 2 spin north; in a second 
branch, subsystem 1 has spin up and subsystem 2 has spin south; in a third 
branch, subsystem 1 has spin down and subsystem 2 has spin north; in the 
fourth branch, subsystem 1 has spin down and subsystem 2 has spin south. 
Choosing the basis {1~')11+0)2, I~')d-0)2, 1+),]+0)2, 1~,),1-0)2}, the expansion 
of [g,) is 

1 
[0) =--7(sin 0h 'h[+0)2-cos  011'h[-0)2 

,/2 

+cos 0 I~>,l + 0)2+sin 0 I~>d-0>2) 
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Therefore, except when 0 = nor~2, the interpretation is that the world is 
divided into four branches, which are not all of  equal size unless 0 = 
zr /4+ nlr/2: in one, subsystem 1 has spin up and subsystem 2 has spin in 
the plus direction defined by 0; in another, subsystem 1 has spin up and 
subsystem 2 has spin in the minus direction defined by 0, etc. 

If we consider the singlet state, 

instead of the triplet state 10), the same subsystem density operators are 
obtained. Therefore, the same degeneracies occur and the same set of 
interpretation bases is given by the algorithm. Again some of the bases 
generate two-branch interpretations, others four-branch interpretations. But 
in this case, due to the spherical symmetry of the singlet state, all the 
two-branch interpretations have a similar form---the spins are in opposite 
directions in each of the branches. 

These two examples invalidate Deutsch's claim (Deutsch, 1985, p. 30) 
that Condition C2 on the interpretation basis implies that in the interpreta- 
tion basis, the matrix representing the state 10) has no more than one nonzero 
element per row or column, making it possible to relabel the interpretation 
basis states so that the matrix is diagonal and [0) takes the Schmidt normal 
form in this basis, i.e., is of the form 14')= ~i cilail[a~), where {la~)} is some 
orthonormal set of eigenstates in H1, the Hilbert space for subsystem 1, 
and {[a~)} is some orthonormal set of eigenstates in/-/2, the Hilbert space 
for subsystem 2. The claim is valid only in the case that ~ and P2 are both 
nondegenerate. Condition C2 then determines a unique interpretation basis, 
and if we expand IO) in terms of this basis, we obtain 10) in the Schmidt 
normal form for the subsystems 1 and 2. However, if one of the fii is 
degenerate, then it does not have a unique set of eigenstates. Deutsch's 
algorithm gives as interpretation basis the product states of any of the 
complete sets of eigenstates of the degenerate density operator with the set 
of eigenstates of the other density operator. Therefore, a number of interpre- 
tation bases are given by the algorithm. If ]q,) is expanded in each of these 
bases, only one will express ]~b) in Schmidt normal form; the other bases 

i j will expand I ~ ) i n  some form I~p)=~ocolbl)[b2), where {Ib~)} is some 
orthonormal set of eigenstates in the Hilbert space for subsystem 1 and 
{Ib{)} is some orthonormal set of eigenstates in the Hilbert space for 
subsystem 2 such that the matrix constructed from the coefficients c U has 
at least one row or column in which there is more than one nonzero 
coefficient. If  both t~l and p2 are degenerate, then neither of them has a 
unique set of eigenstates. Deutsch's algorithm gives as interpretation basis 
the product states of any complete set of eigenstates of ~ with any complete 
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set of eigenstates for fi2. Therefore, a number  of  interpretation bases are 
given by the algorithm. I f  lq~ ) is expanded in each of these bases, some of 
them will express I~) in Schmidt normal form, others will not, and for these 
interpretation bases the matrix constructed f r o m  the coefficients will have 
at least one row or column in which there is more than one nonzero 
coefficient. Notice that if any of the nonzero coefficients in a Schmidt normal 
form expansion of IqJ) for a certain product structure are of  equal modulus, 
the Schmidt normal form is not unique for that product structure. The 
subsystem density operators will be degenerate and Condition C2 will not 
determine a unique basis for each of them. 

Concerning the nonuniqueness of  the interpretation basis for the triplet 
state, Deutsch (1985, p. 28) writes: 

The possibility of  more than one interpretation is not consistent with the principle 
of  realism which we have been implementing everywhere. But of  course the 
terms "'up," "down,"  "Nor th ,"  and "South"  have no invariant meaning in the 
simple world of (57). They would acquire meaning only if the degeneracy were 
broken by the dynamical  evolution. 

The idea is that, since in order to define the physical directions some physical 
system must be taken as a reference system, in the simple world of Itp), 
where there is not another system to act as a reference system for the two 
spin-�89 systems relative to which a direction to call "up ,"  a different direction 
to call "north,"  etc., can be defined, it does not matter that our mathematical  
model for this situation offers us a number  of  alternative representations; 
there is no physical difference between these representations in this case. 

However, as described in his paper,  Deutsch's (1985) version of the 
MWI gives us a picture of  the world as a set of  universes differentiated at 
any time into a number  of  distinct subsets, i.e., branches. I f  we adopt  this 
realist picture, then, presumably,  the number  of  distinct branches at any 
time should be definite and if the quantum mechanical description is 
complete, then the state and the interpretation basis, determined by the 
state, Hilbert space, and Hamiltonian for the system, should determine this 
number. However, for state [~O), some of the interpretation bases on offer 
distinguish two branches, some four. Therefore, if we are not to abandon 
the program altogether, either we maintain all the interpretation bases and 
modify our picture of  the world or try somehow to reduce the set of  
interpretation bases on offer, at least to a set which generates the same 
number  of  branches. 

Deutsch has suggested (private communication) a modification to the 
many universes picture of  the world which maintains all the interpretation 
bases on offer. We will not involve ourselves here in either a description 
of this modification or a discussion of whether it constitutes a feasible 
picture for a realist to hold. For, in Section 2.3, we show that there are 
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other situations in which degeneracies in the subsystem density operators 
occur and for which it can be argued that a unique basis should be picked 
out for the interpretation basis. We show that Deutsch's algorithm is 
inadequate to do this. Therefore, we conclude that any interpretation 
employing this algorithm will be inadequate. 

2.3. A Major Inadequacy in Deutsch's Algorithm 

Consider the following model of a simple measurement of the first 
kind: the 10)1, l ib states of subsystem 1, the "object" system, are to be 
"measured" by the 10)2, 1l)2 states of subsystem 2, the "apparatus" system. 
Both systems have two-dimensional Hilbert spaces. The "measurement" 
interaction is such that [i)llo)21,[i)lli)2. So, if we start with the object 
subsystem in the superposition 

I+), = ~-~ (10), + ]1)1) 

and the apparatus subsystem in the "receptive" state 10)2, then the state of 
the combined system at the end of the measurement will be 

~ (10)110)2+ 11),11)2) 

Assuming that the correct product structttre divides the system into the 
object and apparatus subsystems, we obtain degenerate subsystem density 
operators, just like in the case of Itp) and I~bs). Therefore, Deutsch's algorithm 
does not pick out a unique interpretation basis. Among the interpretation 
bases on offer are: the product states of {10>, [1)1} and {10)2, ll)2}, the product 
states of {[+)1} and {[+)2}, the product states of {10)1, I1)1} and {1+)2}, etc., 
where [+) = (lO) -4-11))/42. 

Given that the setup was supposed to describe a measurement of the 
first kind of the subsystem 1 observable r = I1)l(lll by the subsystem 2 
observable 16 = [1)2(112, a suitable algorithm for defining the interpretation 
basis should pick out the basis of product states of the eigenstates of these 
two observables uniquely, in order for these observables to be given definite 
(multi-) values according to the interpretation. However, as has been shown 
above, Deutsch's algorithm does not pick out this basis uniquely. Indeed, 
some of the bases given by his algorithm pick out neither P nor O to have 
well-defined values. Some of the bases on offer (for example, the third listed 
above) give an expansion of the final object-apparatus state which has four 
elements with nonzero coefficients. For these bases the object and apparatus 
observables picked out to have well-defined values are not perfectly corre- 
lated in the final state. Each of the two values of the object observable 
occur with each of the two values of the apparatus observable. Therefore, 
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according to these bases, no measurement of the first kind of any subsystem 
1 observable by any subsystem 2 observable has occurred. 

Now, either a measurement of the first kind is achieved for the system 
described in the simple model or it is not. If  a measurement of the first 
kind is achieved, then, in order to maintain the claim that quantum 
mechanics interpreted using the interpretation basis determined by 
Deutsch's algorithm is a complete theory, we need to find a way to reduce 
the number of interpretation bases on offer for the system on completion 
of the measurement. If  a measurement of the first kind is not achieved in 
the situation described in the simple model, then, assuming that measure- 
ments of the first kind are possible, even for the case when the initial state 
of the object system is a superposition of eigenstates of the operator 
corresponding to the observable being measured with some coefficients 
equal (let us call such measurements "equal coefficient measurements of 
the first kind"), we need to show how the simple model should be elaborated 
to break the degeneracy and pick out a suitable interpretation basis so that 
a model may be provided for such equal coefficient measurements. If  neither 
of these alternative courses of action succeeds, Deutsch's algorithm is 
inadequate to determine the basis we require for equal coefficient measure- 
ments of the first kind, and is therefore inadequate to determine the interpre- 
tation basis. 

Alternative I 

Confronted just with a system composed of two subsystems in a state 
whose Schmidt normal form for the two subsystems has some nonzero 
coefficients of equal modulus, Deutsch's algorithm does not pick out a 
unique basis. On offer are not only those bases which generate other 
expansions of the state vector in Schmidt normal form for the two subsys- 
tems, i.e., bases formed from the product states of eigenstates of pairs of 
observables which are perfectly correlated in the joint state, but also bases 
which expand the state vector in the product states of eigenstates of pairs 
of observables which are not perfectly correlated in the joint state. However, 
if such a state arises as a result of a measurement of the first kind, we want 
to pick out a particular basis for the interpretation basis--the basis of 
product states of the eigenstates of the object observable being measured 
and eigenstates of the apparatus pointer observable. Perhaps we need to 
look at the historical development of the state vector for the object-apparatus 
system to its final state in order to pick out the appropriate basis using 
Deutsch's algorithm; perhaps when the state has evolved from a factorizable 
state for the two subsystems, as in the case of a measurement, the interaction 
which entangles the states determines a preferred basis for the end of the 
measurement. Suppose we apply the algorithm at time t, where t < % the 
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t ime at which the measu remen t  is complete ;  pe rhaps  this will give a unique 
interpreta t ion basis {]c~,, t)}. I f  we calculate this basis for  t as t + % perhaps  
we will find it converging to the basis which we want  to pick out for  t ime 
% the end of  the measurement .  Let us investigate this idea for  the s imple 
mode l  o f  a measu remen t  of  the first kind given earlier. 

Now,  in order  to calculate the in terpreta t ion basis at an in termedia te  
stage in the measurement ,  we need to find the Hami l ton ian  for  the measure-  
ment  interaction.  This is not  defined uniquely  by the c o n d i t i o n  [/)110)2 -+ 
[i)11i)2 given earlier. We need to specify whether  the interact ion is constant  
during the t ime interval t = 0 to t = r and what  happens  to the s t a t e s  ]i)~[1)2. 
Let us take the constant  interact ion,  which is defined by ]i)1]j)2-+ [ihli| 
where i=0, 1 , j = 0 ,  1, and  O - - - a d d i t i o n  modulus  2. Assuming that  the 
self- interactions of  the subsystems in the t ime interval t = 0 to t = r are 
negligible, it follows f rom the above that  

"/7" 
= - ~ r  I 1)1(111([0)2 - I 1)2)((0]2- <ll:) 

Then,  if  

it follows that  

and  

]0(0)> = ~-~ (10>1 + Ilh)lo>: 

[ q~(t)> = ~-~[Ioh[o): § 2'(1 + e( '~/~ ' ) l l )dO>:+�89 - e ( ' ~ / " ) l l > l l l > d  

I~(~-)> = ~--~ (lo>11o>= + I1>#)~) 

The quest ion is whether  applying the a lgor i thm t o / q ( t )  and  ]~b(t)) for  
t < r will pick out a unique interpreta t ion basis which converges on the 
basis {]0)1[0)2, [0)1[1)2,...} at the end of  the measurement .  It  becomes  
apparen t  that  the answer  to this quest ion is no, wi thout  doing the calculat ion,  
if we just  express H(t), ]q,(t)), etc., in the basis {[ -4- )11-~)2 , 1+)11-)2, I-)11+)2, 
I-hi->:), where I •  (Io>• II>)/v~. For  then 

g = - ~(1+>1 -I->,)(<+1, - < -  I1)[->:<-I: 

[~(o)> = I§ ~(1+>:+ I->:) 

I~,(t)> = ~El+>d+>:+lO + e ( ' ~ / ~ ' ) l + > d - > :  

+�89 - e(/~/~)')[->11->2 ] 

I ~,o-)) = ~ (1+>,1+>: + I->ll->=) ,/2 
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In the (0-1) representation the process looks like a measurement of  the 10), 
I1) states of  subsystem 1 by the ]0), I1) states of  subsystem 2 and we would 
hope to be able to pick out the (0-1) basis at the end of the measurement.  
But in the (+) representation, the process looks like a measurement of  the 
I+) states of subsystem 2 by the ]• states of  subsystem 1, in which case we 
would want to pick out the (+) basis at the end of the measurement.  
Therefore, by looking at the historical development of  the system to its final 
state, the most we will be able to do is reduce the bases on offer for the 
final state to the following two: the {]0)1, ]1)1}| ]1)2} basis and the 
{1+)1}| basis, both of  which generate expansions of  the final state in 
Schmidt normal form. Nothing in /-), l~b), or H can make one of these 
representations more privileged than the other; they have corresponding 
features. I f  we introduce extra assumptions to pick out the (0-1) basis, we 
could equally well have introduced a corresponding set of  assumptions to 
pick out the (+) basis. Therefore, Deutsch will not be able to pick out a 
unique interpretation basis for this simple measurement of  the first kind 
using his algorithm without introducing arbitrary assumptions. 

Deutsch's answer may be that in the situation described, there really 
is no physical difference between the two descriptions, no way to distinguish 
which of the two subsystems is to be called "1"  and which is to be called 
"2" and no way to pick out the "0-1 direction" as opposed to the " •  
direction." But then it  needs to be shown how a model can ever be provided, 
using Deutsch's algorithm, for a measurement of  the first kind, of  a specific 
observable on an object in a state which is a superposition, with some 
coefficients equal, of  eigenstates of  this observable. 

Alternative 2 

In the following we explore various ways of elaborating the simple 
model in an attempt to find a model for equal coefficient measurements of 
the first kind, using Deutsch's algorithm. The idea is to see if by introducing 
a third subsystem the degeneracy can be broken. The presence of a third 
subsystem which has not and does not interact with the two subsystems 1 
and 2 and so is not in an entangled state with these subsystems does nothing 
to remove the degeneracy; the density operator for subsystems 1 and 2 
obtained by tracing over the state of  the third subsystem is the same as 
before and so generates the same degeneracies. Therefore, we should investi- 
gate various ways of entangling a third subsystem, which it might be hoped 
will break the degeneracy. 

(i) Suppose we introduce a third subsystem with a Hilbert space of 
dimension n and a basis in this Hilbert space {]i)3}, i = 1 , . . . ,  n - 1. Suppose 
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that this system is initially in the state 10)3 and interacts with subsystem 2 
after 2 has interacted with subsystem 1, in such a way as to correlate its 
i0)3, [1)3 states with the [0)2, 11)2 states of subsystem 2, so that 1i)2]0)3 ~ [i)2[i)3- 
Given the initial state 

~(1 0h+ll>,)[0>2f0)3 

the final state of the three subsystems will then be 

I~) = ~ (lob }0ht0>3 +11>, J1 )2f1>3) 

It follows that 

�89 (0[ + [1 ) (1 [ )  P l  ~ 1 1 1 1 

~2 = �89 + 11>2<112) 

~3 =-~(10)3(013 + 11>3<113) 

Therefore, ~1, ~2 and P3 are all degenerate. Therefore, assuming that the 
correct product structure divides the system into the three subsystems 1, 2, 
and 3, if we apply Deutsch's algorithm for the case of three subsystems, 
whichever subsystem we deal with first, we obtain a degenerate density 
operator. Therefore, introducing a third subsystem which correlates its state 
with subsystem 2 produces a final three-subsystem state for which the 
problematic degeneracies still occur, and so does not give us a model for 
equal coefficient measurements of the first kind, using Deutsch's algorithm. 

(ii) Suppose we introduce a third subsystem to measure a correlation 
observable on subsystems 1 and 2. The appropriate correlation observable 
to try, in the hope that the degeneracy will be broken, is 

= 10)1[0)2(011<012 + [1),11h<111(112 

This has two pairs of degenerate eigenstates with eigenvalues 0 and 1. A 
complete set of orthonormal eigenstates for C is 

{lohloh, 10),11)2, [1),[0)2,11),11>2} 

The first and last of these states have eigenvalue 1, the other two have 
eigenvalue 0. Let subsystem 3 have at least three orthogonal states, [R)3 , 
IN)3 and [11)3- Let  IR)3 be its receptive state prior to interaction with 
subsystems 1 and 2, ]N)3 its state when C is found to equal 0, [Y)3 its state 
when C is found to equal 1. Let the interaction between subsystem 3 and 
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subsystems 1 and 2 occur after subsystems 1 and 2 have interacted and be 
such that 

1 0 > 1 1 0 > 2 1 R > 3 - ,  { 0 > l i r a 2 1 Y > 3  

I0>,{I>21R>3-> I0>,{ I>21N>3 

11>110>2{N>3 

l I>, 11>z{ R>3 -> l l>, ]I>2{ Y>3 

Therefore, given the initial state we have been considering, the final state 
of  the three subsystems will be 

l,> =  <lo> lo>=l r>3 + 11>,{I>2l Y>3) 
,/2 

- + 11>,{I>2>I 

Therefore, applying Deutsch's algorithm for three subsystems, assuming 
the correct product structure divides the system into the three subsystems 
1, 2 and 3, taking subsystem 1, 2 or 3 first, we still obtain the problematic 
degeneracies for /3, and /~2- Therefore, introducing a third subsystem to 
measure the correlation observable C on subsystems 1 and 2 generates a 
final state for which the problematic degeneracies still occur, and therefore 
does not seem to provide us with a model for equal coefficient measurements 
of  the first kind. 

Therefore, introducing a third subsystem in a manner  which it might 
be hoped would pick out the appropriate  basis for there to be an equal 
coefficient measurement  of the first kind does not remove the degeneracy 
in the subsystem density operators for the final state. It can be seen that 
introducing further subsystems will be of  no greater help in this. It seems 
that any elaboration on our simple model will not remove the degeneracies 
in the final state. Therefore, it seems that no model can be provided for 
equal coefficient measurements of  the first kind, using Deutsch's algorithm. 

3. C O N C L U S I O N  

In Section 2.1 it has been shown that Deutsch's heuristic argument is 
inadequate to establish the conditions appearing in his algorithm. In Section 
2.2 it has been argued that a solution to Deutsch's algorithm may not always 
exist, and it has been shown that in some cases, although a solution exists, 
it is not unique. In Section 2.3 it has been argued that no model can be 
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provided,  using Deutsch 's  algorithm, for certain types of measurement  and  
that, therefore, any in terpre ta t ion using his algori thm will be inadequa te  to 

account  for the achievement  of such measurements .  It cannot  be conc luded  

that there is no algori thm which, when employed with the MWI,  can provide 
a model  for such measurements ,  but  the onus  is on the defender  of  the 

MWI (or other interpretat ions  which require an algori thm to determine a 
preferred basis) to come up with an adequate  algori thm and  an a rgument  
for it. Without  a viable algori thm, we have to resort to a priori metaphysics 
to interpret  any state func t ion  using these interpretat ions,  and  they lose one 
of their impor tan t  selling points.  
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